If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x-17=0
a = 1; b = -5; c = -17;
Δ = b2-4ac
Δ = -52-4·1·(-17)
Δ = 93
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{93}}{2*1}=\frac{5-\sqrt{93}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{93}}{2*1}=\frac{5+\sqrt{93}}{2} $
| -2(x+9)=-3(4x+36)/6 | | 8s=80s= | | 8x-6(x-2)-22=10+2x | | 2(3e-2)+9=5e | | 27+6x=3x+54 | | d=500+0.75 | | d=500+0.75 | | d=500+0.75 | | 10-3(m-5)=2(5-m) | | -2/3y+3/4y=4 | | -4(1-7x)=6(6x+10 | | 9x-10=5x-3 | | h-1=9 | | x-62=93 | | x-62=93 | | x-62=93 | | -72.85=4.7x | | -72.85=4.7x | | x-62=93 | | -72.85=4.7x | | x+57=x+135 | | -72.85=4.7x | | 3n+15=−30 | | -72.85=4.7x | | x+57=x+135 | | -3-6m=9 | | 83=10x7 | | (5x-3)(2x+4)=10x²+15x-12 | | (5x-3)(2x+4)=10x²+15x-12 | | (5x-3)(2x+4)=10x²+15x-12 | | (5x-3)(2x+4)=10x²+15x-12 | | (5x-3)(2x+4)=10x²+15x-12 |